Онкотическое давление крови зависит от количества

Онкотическое давление

Онкотическое давление крови зависит от количества

Часть общего осмотического давления, обусловленная белками, называется коллоидно-осмотическим (онкотическим) давлением плазмы крови. Онкотическое давление равно 25 – 30 мм рт. ст. Это составляет 2 % от общего осмотического давления.

Онкотическое давление в большей степени зависит от альбуминов (80 % онкотического давления создают альбумины), что связано с их относительно малой молекулярной массой и большим количеством молекул в плазме.

Онкотическое давление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот.

При снижении концентрации белка в плазме крови (гипопротеинемия) вода перестает удерживаться в сосудистом русле и переходит в ткани, развиваются отеки.

Причиной гипопротеинемии может быть потеря белка с мочой при поражении почек или недостаточный синтез белка в печени при её повреждении.

Регуляция рН крови

рН (водородный показатель)– это концентрация водородных ионов, выраженная отрицательным десятичным логарифмом молярной концентрации ионов водорода. Например, рН=1 означает, что концентрация равна 10-1 моль/л; рН=7 – концентрация составляет 10-7 моль/л, или 100 нмоль/л.

Концентрация водородных ионов существенно влияет на ферментативную деятельность, на физико-химические свойства биомолекул и надмолекулярных структур. В норме рН крови соответствует 7,36 (в артериальной крови — 7,4; в венозной крови — 7,34).

Крайние пределы колебаний рН крови, совместимые с жизнью, — 7,0—7,7, или от 16 до 100 нмоль/л.

В процессе обмена веществ в организме образуется огромное количество «кислых продуктов», что должно приводить к сдвигу рН в кислую сторону.

В меньшей степени в организме накапливаются в процессе метаболизма щелочи, которые могут снизить содержание водорода и сместить рН среды в щелочную сторону — алкалоз.

Однако реакция крови при этих условиях практически не изменяется, что объясняется наличием буферных систем крови и нервно-рефлекторных механизмов регуляции.

Буферные системы крови

Буферные растворы (БР) сохраняют устойчивость буферных свойств в определенном интервале значений рН, то есть обладают определенной буферной емкостью. За единицу буферной емкости условно принимают емкость такого буферного раствора, для изменения рН которого на единицу требуется добавить 1 моль сильной кислоты или сильной щелочи на 1 л раствора.

Буферная емкость находится в прямой зависимости от концентрации БР: чем концентрированнее раствор, тем больше его буферная емкость; разведение БР сильно уменьшает буферную емкость и лишь незначительно изменяет рН.

Тканевая жидкость, кровь, моча и другие биологические жидкости являются буферными растворами. Благодаря действию их буферных систем поддерживается относительное постоянство водородного показателя внутренней среды, обеспечивающее полноценность метаболических процессов (см. Гомеостаз). Наиболее важной буферной системой является бикарбонатная система крови.

Бикарбонатная буферная система

NaHCO3 = 18

CO2           1

Поступающая в кровь в результате обменных процессов кислота (HA) вступает в реакцию с гидрокарбонатом натрия:

                                                                                                          ↗ CO2

              НА + NаHCO3 ® NaA + H2CO3                       (1)

                                                                   ↘ H2O

Это чисто химический процесс, вслед за которым включаются физиологические регуляторные механизмы.

1. Двуокись углерода возбуждает дыхательный центр, объем вентиляции увеличивается и СО2 выводится из организма.

2. Результатом химической реакции (1) является уменьшение щелочного резерва крови, восстановление которого обеспечивается работой почек: образующаяся в результате реакции (1) соль (NаА) поступает в почечные канальцы, клетки которых непрерывно секретируют свободные водородные ионы и обменивают их на натрий:

NaА + H+ ® HA + Na+

Образующиеся в канальцах почек нелетучие кислые продукты (HA) выводятся с мочой, а натрий реабсорбируется из просвета почечных канальцев в кровь, восстанавливая тем самым щелочной резерв (NаHCO3).

Особенности бикарбонатного буфера

1.Самый быстродействующий.

2.Нейтрализует как органические, так и неорганические кислоты, поступающие в кровь.

3.Взаимодействуя с физиологическими регуляторами pH, обеспечивает выведение летучих (легкие) и нелетучих кислот, а также восстанавливает щелочной резерв крови (почки).

Фосфатная буферная система

Na2HPO4 = 4          

NaH2PO4  1

Эта система нейтрализует поступающие в кровь кислоты (НА) благодаря их взаимодействию с гидрофосфатом натрия.

НА + Na2HPO4 ® NaА + NaH2PO4

Образующиеся вещества в составе фильтрата поступают в почечные канальцы, где гидрофосфат натрия и натриевая соль (NaА) взаимодействуют с водородными ионами, а дигидрофосфат выделяется с мочой, освобождающийся натрий реабсорбируется в кровь и восстанавливает щелочной резерв крови:

Na2HPO4 + H+ ® NaH2PO4 + Na+

NaA + H+ ® HA + Na+

Особенности фосфатного буфера

1.Емкость фосфатной буферной системы мала в связи с небольшим количеством в плазме фосфатов.

2.Основное назначение фосфатная буферная система приобретает в почечных канальцах, участвуя в восстановлении щелочного резерва и выведении кислых продуктов.

Гемоглобиновая буферная система

KHb                                         KHbO2

HHb (венозная кровь)     HHbO2 (артериальная кровь)

Образующаяся в процессе обмена веществ двуокись углерода поступает в плазму, а затем в эритроцит, где под влиянием фермента карбоангидразы при взаимодействии с водой образуется угольная кислота:

СО2 + Н2О ® Н2СО3

В тканевых капиллярах гемоглобин отдает свой кислород тканям, а восстановленная слабая соль гемоглобина вступает в реакцию с еще более слабой угольной кислотой:

KНb + H2CO3 ® KHCO3 + HHb

Таким образом, происходит связывание водородных ионов гемоглобином. Проходя через капилляры легких, гемоглобин соединяется с кислородом и восстанавливает свои высокие кислотные свойства, поэтому реакция с Н2СО3 протекает в обратном направлении:

                                                                                                    CO2                                   

ННbO2 + KHCO3 ® KHbO2 + H2CO3

                                                                                                       H2O

Двуокись углерода  поступает в плазму, возбуждает дыхательный центр и выводится с выдыхаемым воздухом.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/20_9596_onkoticheskoe-davlenie.html

Осмотическое и онкотическое давление крови

Онкотическое давление крови зависит от количества

Вискозиметр Гесса.

В клинике чаще применяют ротационные вискозиметры.

В них жидкость находится в зазоре между двумя соосными телами, на­пример цилиндрами. Один из цилиндров (ротор) вращается, а другой неподвижен. Вязкость измеряется по угловой скорости ротора, создающего определенный момент силы на неподвижном цилиндре, или по моменту силы, действующему на неподвижный цилиндр, при заданной угловой скорости вращения ротора.

В ротационных вискозиметрах можно менять градиент скорости, задавая разные угловые скорости вращения ротора. Это позволяет измерять вязкость при разных градиентах скорости, которые меняется для неньютоновских жид­костей, таких как кровь.

++636+ С.149

Температура крови [13]

Во многом зависит от интенсивности обмена веществ того органа, от которого оттекает кровь, и колеблется в пределах 37—40°С. При движении крови не только происходит некоторое выравнивание температуры в различных сосудах, но и создаются условия для отдачи или сохранения тепла в организме.

Осмотическим назы­вается давление крови, которая обуславливает переход растворителя (вода) через полупроницаемую мембрану из менее в более кон­центрированный раствор.

Другими словами движение растворителя направлено от меньшего к большему осмотическому давлению. Сравните с гидростатическим давлением: движение жидкости направлено от большего к меньшему давлению.

Обратите внимание! Нельзя в определении говорить « …давлением … назы­вается сила … » ++601[Б67] ++.

Осмотическое дав­ление крови равно приблизительно 7,6 атм. или 5776 мм рт.ст. (7,6´760).

Осмотическое давление крови зависит в основном от растворен­ных в ней низкомолекулярных соединений, главным образом солей. Около 60 % этого давления создается NaCl.

Осмотическое давление в крови, лимфе, тканевой жидкости, тканях приблизительно оди­наково и отличается постоянством.

Даже в случаях, когда в кровь поступает значительное количество воды или соли, осмотическое давление не претерпевает существенных изменений.

Онкотическое давление — часть осмотического давления, обусловленная белками. 80 % онкотического давления создают аль­бумины.

Онкотическое давление не пре­вышает 30 мм рт. ст., т.е. составляет 1/200 часть осмотического давления.

Используется несколько показателей осмотического давления:

Единицы давления атм. Или мм рт.ст.

Осмотическая активность плазмы[Б68] – концентрации кинетически (осмотически) активных частиц в единице объёма. Чаще всего используется единица миллиосмоль на литр – мосмоль/л.

1 осмоль = 6,23 ´ 1023 частиц

Нормальная осмотическая активность плазмы = 285-310 мосмоль/л.

Мосмоль = ммоль

В практике часто используются понятия осмолярности – ммоль/л и осмоляльности ммоль/кг (литр и кг растворителя)

Чем больше онкотическое давление, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике. Поэтому кровезамещающие растворы должны содержать в своем составе коллоидные вещества, способные удерживать воду [++601++].

При снижении концентрации белка в плазме развиваются отеки, так как вода перестает удерживаться в сосудистом русле и переходит в ткани.

Онкотическое давление играет более важную роль в регуляции водного обмена, чем осмотическое. Почему? Ведь оно в 200 раз меньше осмотического. Дело в том, что Градиент концентрация электролитов (которые обуславливают осмотическое давление) по обе стороны биологических барьеров

В клинической и научной практике широко используются такие понятия как изотонические, гипотонические и гиперто­нические растворы. Изотонические растворы имеют суммарную концентрацию ионов, не превышающую 285-310 ммоль/л.

Это может быть 0,85 % раствор хлористого натрия (его часто назы­вают “физиологическим” раствором, хотя это не полностью отражает ситуацию), 1,1 % раствор хлористого калия, 1,3 % раствор бикарбоната натрия, 5,5 % раствор глюкозы и т.д.

Гипотонические растворы имеют меньшую концентрацию ионов – менее 285 ммоль/л, а гипертонические, наоборот, большую выше 310 ммоль/л.

Эритроциты, как известно, в изотоническом растворе не изменяют свой объем, в гипертоническом – умень­шают его, а в гипотоническом – увеличивают пропорционально степени гипотонии, вплоть до разрыва эритроцита (гемолиза). Явление осмотического гемолиза эритроцитов используется в клинической и научной практике с целью определения качест­венных характеристик эритроцитов (метод определения осмоти­ческой резистентности эритроцитов).

Источник: https://studopedia.su/1_14559_osmoticheskoe-i-onkoticheskoe-davlenie-krovi.html

Что это такое?

Онкотическое давление крови (осуществляемая молекулярная компрессия белков на окружающие ткани) — представляет собой определенную часть напора крови, создаваемую пребывающими в ней белками плазмы. Онкотический тонус (в дословном переводе — объем, масса) — коллоидноосмотическое АД, своеобразная доля осмотического тонуса, создаваемая высокомолекулярными компонентами физколлоидного раствора.

Молекулярная компрессия белков имеет важное значение для осуществляемой жизнедеятельности организма.

Уменьшение концентрации белка в крови (гипопротеиномия может быть из-за того, что имеют место самые разные причины: голодание, нарушение деятельности органов ЖКТ, потеря протеина с мочой при заболеваниях почек) вызывает разницу в онкоосмолярном АД в жидкостях тканей и крови.

Вода однозначно стремится в сторону большего тонуса (иначе говоря, в ткани), вследствие чего возникают так называемые белковые, протеиновые отеки подкожной жировой клетчатки (они называются еще «голодные» и «ренальные» отеки). При оценке состояния и определения тактики ведения больных учет осмоонкотических явлений имеет просто огромное значение.

Все дело в том, что только оно в состоянии гарантировать удержание должного количества воды в крови.

Вероятность развития этого возникает по той простой причине, что практически все высокоспецифические по своей структуре и природе протеины, концентрирующиеся прямо в циркулирующей плазме крови, с большим затруднением проходят сквозь стенки гематомикроциркуляторного русла в тканевую среду и делают необходимое для обеспечения рассматриваемого процесса онкотический тонус.

Только лишь градиентный поток, создаваемый самими солями и некоторыми особо крупными молекулами органических высокоорганизованных соединений, может иметь идентичное значение как в собственно тканях, так и в плазменной, циркулирующей по всему организму, жидкости.

Во всех остальных ситуациях белково-осмолярный напор крови при любом раскладе будет на несколько порядков выше, потому как в природе имеет место некий градиент онкоосмолярного тонуса, который обусловлен происходящим жидкостным обменом между плазмой и абсолютно всей тканевой жидкостью.

Приведенная величина может быть обеспечена только лишь специфическими белками-альбуминами, поскольку сама по себе плазма крови концентрирует в себе больше всего именно альбуминов, высокоорганизованные молекулы которых по размеру немного меньше, чем у прочих белков, а доминирующая концентрация в плазме их на несколько порядков выше.

Если белков концентрация по тем или иным причинам уменьшается, то возникают отеки тканей из-за чрезмерно выраженной потери плазмой крови воды, а при их росте происходит задержка в крови воды, причем в больших количествах.

Из всего перечисленного выше нетрудно догадаться, что само по себе онкоосмолярное давление реализует немаловажную роль в жизни каждого человека.

Именно по этой причине докторов интересуют все состояния, которые, так или иначе, могут быть ассоциированы с динамическими изменениями напора жидкости, циркулирующей в сосудах и тканях.

С учетом того, что вода имеет свойство как собираться в сосудах, так и излишне экскретироваться из них, в организме могут манифестировать многочисленные патологические состояния, которые однозначно требуют соответствующей коррекции.

Так что изучение механизмов насыщения тканей и клеток жидкостью, а также патофизиологического характера влияния этих процессов на происходящие изменения в кровяном напоре организма, является первостепенной задачей.

Норма

Величина белково-осмолярного потока варьируется в пределах 25-30 мм рт.ст. (3,33- 3,99 кПа) и на 80% определяется альбуминами по причине их малых размеров и наибольшей концентрации в плазме крови.

Показатель играет принципиально важную роль в регуляции водно-солевого обмена в организме, а именно в ее удержании в кровеносном (гематомикроциркуляторном) сосудистом русле.

Поток оказывает воздействие на синтез тканевой жидкости, лимфы, мочи, а также на всасывание воды из кишечника.

При понижении величины белково-осмолярного АД плазмы (которое случается, например, при различных патологиях печени — в таких ситуациях понижается образование альбуминов, или болезнях почек, когда возрастает экскреция белков с мочой) возникают отеки, так как вода недостаточно хорошо удерживается в сосудах и постепенно мигрирует в ткани.

В плазме крови человека константа белково-осмолярного АД по величине составляет лишь около 0,5% осмолярности (в переводе на иные величины кратен этот показатель 3—4 кн/м², или 0,03—0,04 атм). Тем не менее даже с учетом этой особенности, белково-осмолярное давление играет определяющую роль в синтезе межклеточной жидкости, первичной мочи и др.

Стенка капилляров совершенно свободно проницаема для воды и некоторых низкомолекулярных биохимических соединений, но не для пептидов и протеидов.

Скорость осуществления фильтрации жидкости через стенку капилляра определяется наличествующей разницей между белково-омолярным давлением, которые оказывают белки плазмы и гидростатическим давлением крови, обеспечиваемым работой сердца.

Механизм формирования нормы константы онкотического давления можно представить следующим образом:

  1. На артериальном конце капилляра солевой раствор в совокупности с питательными веществами перемещается в межклеточное пространство.
  2. На венозном конце капилляра происходит процесс строго в противоположном направлении, потому как венозный тонус в любом случае ниже величины белково-осмолярного давления.
  3. В результате этого комплекса взаимодействий, в кровь переходят биохимические субстанции, отдаваемые клетками.

При проявлении патологий, сопровождающихся уменьшением концентрации в крови белков (особенно альбуминов), онкотический тонус значительно снижается, и это может стать одной из причин собирания жидкости в межклеточном пространстве, результатом чего становится возникновение отеков.

Реализуемое гомеостазом белково-осмолярное давление имеет достаточно важное значение для обеспечения нормальной жизнедеятельности организма.

Понижение концентрации белка в крови, причинами которого могут стать гипопротеиномия, голодание, потерю протеина с мочой при патологии почек, различные проблемы в деятельности органов ЖКТ, вызывает возникновение разницы цифр онкоосмотического давления в тканных жидкостях и крови.

Соответственно, при оценке объективного состояния и лечении больных учет имеющихся осмоонкотических явлений имеет принципиально важное значение.

Повышение уровня может обеспечиваться только попаданием в кровоток высоких концентраций альбумина. Да, поддерживаться этот показатель может правильным питанием (при условии отсутствия первичной патологии), а вот коррекция состояния проводится только при помощи инфузионной терапии.

Как измерить

Методы измерения онкоосмолярного давления крови принято дифференцировать на инвазивные и неинвазивные. Кроме того, клиницисты выделяют прямой и непрямой виды.

Прямым методом обязательно воспользуются для измерения венозного давления, а непрямым — артериального.

Непрямое измерение на практике реализуется всегда аускультативным способом Короткова — собственно, отталкиваясь от полученных показателей, в ходе проведения этого мероприятия докторам удастся высчитать показатель онкотического давления.

Если говорить точнее, то в данной ситуации появляется возможность только ответить на вопрос в отношении того, нарушено ли онкоосмотическое давление, или же нет, потому как для точной идентификации этого показателя однозначно надо будет узнавать концентрации альбуминовой и глобулиновой фракции, что сопряжено с необходимостью проведения ряда сложнейших клинико-диагностических исследований.

Логично предположить, что в том случае, если показатели АД часто варьируются, то это не самым лучшим образом отражается на объективном состоянии больного.

При этом давление может возрастать как по причине сильного напора крови в сосудах, так и понижаться при отмечающемся чрезмерном выходе жидкости из клеточных мембран в близлежащие ткани.

В любом случае необходимо тщательнейшим образом следить за своим состоянием и динамикой перепадов давления.

Если вовремя идентифицировать и диагностировать проблему, то проводимое лечение будет куда более быстрым и намного эффективнее.

Однако следует сделать поправку и на то, что для каждого отдельно взятого человека оптимальные значения осмо- и онкотического давлений будут немного различаться. Соответственно, в зависимости от полученных значений кровяного давления классифицируют гипо- и гипертонию.

Гипертония

Источник: http://sosudoved.ru/diagnostika/onkoticeskoe-davlenie.html

Онкотическое давление крови

Онкотическое давление крови зависит от количества

⇐ Предыдущая12345678910Следующая ⇒

Это давление крови (25 – 30 мм рт. ст. или 0,03 – 0,04 атм.)создается белками. От уровня этого давления зависит обмен воды между кровью и межклеточной жидкостью. Онкотическое давление плазмы крови обусловлено всеми белками крови, но основной вклад (на 80%) вносят альбумины.

Крупные молекулы белков не способны выходить за пределы кровеносных сосудов, и будучи гидрофильными, удерживают воду внутри сосудов. Благодаря этому белки играют важную роль в транскапиллярном обмене. Гипопротеинемия, возникающая, например, в результате голодания, сопровождается отеками тканей (переходом воды в межклеточное пространство).

Общее количество белков в плазме составляет 7-8% или 65-85 г/л.

Функции белков крови.

1. Питательная функция.

2. Транспортная функция.

3. Создание онкотического давления.

4. Буферная функция – За счет наличия в составе белков плазмы щелочных и кислых аминокислот, белки участвуют в поддержании кислотно-основного равновесия.

5. Участие в процессах гемостаза.

Процесс свертывания включает целую цепь реакций, в которых участвует ряд белков плазмы (фибриноген и др.).

6. Белки вместе с эритроцитами определяютвязкость крови – 4,0-5,0,что в свою очередь оказывает влияние на гидростатическое давление крови, СОЭ и др.

Вязкость плазмы составляет 1,8 – 2,2 (1,8-2,5). Она обусловлена наличием в плазме белков. При обильном белковом питании вязкость плазмы и крови повышается.

7. Белки являются важным компонентом защитной функции крови (особенно γ-глобулины). Они обеспечивают гуморальный иммунитет, являясь антителами.

Все белки плазмы крови делят на 3 группы:

· альбумины,

· глобулины,

· фибриноген.

Альбумины (до 50г/л). Их 4-5% от массы плазмы, т.е. около 60% всех белков плазмы приходится на их долю. Они являются самыми низкомолекулярными. Их молекулярная масса около 70 000 (66 000). Альбумины на 80% определяют коллоидно-осмотическое (онкотическое) давление плазмы.

Общая площадь поверхности множества мелких молекул альбумина очень велика, и поэтому они особенно хорошо подходят для выполнения функции переносчиков различных веществ.

Они переносят: билирубин, уробилин, соли тяжелых металлов, жирные кислоты, лекарственные препараты (антибиотики и др.). Одна молекула альбумина может одновременно связать 20-50 молекул билирубина. Альбумины образуются в печени.

При патологических состояниях их содержание снижается.

Рис. 1. Белки плазмы

Глобулины(20-30г/л). Их количество доходит до 3% от массы плазмы и 35-40% от общего количества белков, молекулярная масса до 450 000.

Различают α1, α2, β и γ –глобулины(рис. 1).

Во фракции α1 –глобулинов(4%) имеются белки, простетической группой которых являются углеводы. Эти белки называют гликопротеинами. Около 2/3 всей глюкозы плазмы циркулирует в составе этих белков.

Фракция α2 –глобулинов (8%) включает гаптоглобины, относящиеся по химическому строению к мукопротеинам, и медьсвязывающий белок – церулоплазмин. Церулоплазмин связывает около 90% всей меди, содержащейся в плазме.

К другим белкам во фракции α2–глобулинов относятся тироксинсвязывающий белок, витамин – В12 – связывающий глобулин, кортизол-связывающий глобулин.

К β–глобулинам (12%) относятся важнейшие белковые переносчики липидов и полисахаридов. Важное значение липопротеидов состоит в том, что они удерживают в растворе нерастворимые в воде жиры и липиды и обеспечивают тем самым их перенос кровью. Около 75% всех липидов плазмы входят в состав липопротеидов.

β–глобулины участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, катионов металлов (железа, меди).

К третьей группе – γ–глобулинам (16%) относятся белки с самой низкой электрофоретической подвижностью. γ–глобулины участвуют в формировании антител, защищают организм от воздействий вирусов, бактерий, токсинов.

Почти при всех заболеваниях, особенно при воспалительных, содержание γ–глобулинов в плазме повышается. Повышение фракции γ –глобулинов сопровождается понижением фракции альбуминов. Происходит снижение так называемого альбумин-глобулинового индекса, который в норме составляет 0,2 /2,0.

К γ–глобулинам относят также антитела крови (αи βагглютинины), определяющие ее принадлежность к той или иной группе крови.

Глобулины образуются в печени, костном мозге, селезенке, лимфатических узлах. Период полураспада глобулинов до 5 дней.

Фибриноген (2-4 г/л). Его количество составляет 0,2 – 0,4% от массы плазмы, молекулярная масса 340 000.

Он обладает свойством становиться нерастворимым, переходя под воздействием фермента тромбина в волокнистую структуру – фибрин, что и обусловливает свертывание (коагуляцию) крови.

Фибриноген образуется в печени. Плазма, лишенная фибриногена называется сывороткой.

Физиология эритроцитов.

Эритроциты – красные кровяные клетки, не содержащие ядра (рис.2).

У мужчин в 1 мкл крови содержится в среднем 4,5-5,5 млн. (около 5,2 млн. эритроцитов или 5,2х1012/л). У женщин эритроцитов меньше и не превышает 4-5 млн. в 1 мкл (около 4,7х1012/л).

Функции эритроцитов:

1.Транспортная – перенос кислорода от легких к тканям и углекислого газа от тканей к альвеолам легких. Возможность выполнять эту функцию связана с особенностями строения эритроцита: он лишен ядра, 90% его массы составляет гемоглобин, остальные 10% приходятся на белки, липиды, холестерин, минеральные соли.

Рис. 2. Эритроциты человека (электронная микроскопия)

Кроме газов эритроциты переносят аминокислоты, пептиды, нуклеотиды к различным органам и тканям.

2. Участие в иммунных реакциях – агглютинации, лизиса и т.п., что связано с наличием в мембране эритроцитов комплекса специфических соединений – антигенов (агглютиногенов).

3. Детоксицирующая функция – способность адсорбировать токсические вещества и их инактивировать.

4. Участие в стабилизации кислотно-основного состояния крови за счет гемоглобина и фермента карбоангидразы.

5. Участие в процессах свертывания крови за счет адсорбции на мембране эритроцитов ферментов этих систем.

Свойства эритроцитов.

1. Пластичность (деформируемость) – это способность эритроцитов к обратимой деформации при прохождении через микропоры и узкие извитые капилляры диаметром до 2,5-3 мкм. Это свойство обеспечивается благодаря особой форме эритроцита – двояковогнутого диска.

2. Осмотическая стойкость эритроцитов. Осмотическое давление в эритроцитах несколько выше, чем в плазме, что обеспечивает тургор клеток. Оно создается более высокой внутриклеточной концентрацией белков по сравнению с плазмой крови.

3. Агрегация эритроцитов. При замедлении движения крови и повышении ее вязкости эритроциты образуют агрегаты или монетные столбики. Вначале агрегация носит обратимый характер, но при более длительном нарушении кровотока образуются истинные агрегаты, что может привести к микротромбообразованию.

4. Эритроциты способны отталкиваться друг от друга, что связано со строением мембраны эритроцитов. Гликопротеины, составляющие 52% массы мембраны, содержат сиаловую кислоту, которая придает отрицательный заряд эритроцитам.

Эритроцит функционирует максимум 120 дней, в среднем 60-90 дней. По мере старения способность эритроцитов к деформации снижается, а превращение их в сфероциты (имеющие форму шара) за счет изменения цитоскелета приводит к тому, что они не могут проходить через капилляры диаметром до 3 мкм.

Эритроциты разрушаются внутри сосудов (внутрисосудистый гемолиз) или захватываются и разрушаются макрофагами в селезенке, купферовских клетках печени и костном мозге (внутриклеточный гемолиз).

Эритропоэз– процесс образования эритроцитов в костном мозге. Первой морфологически распознаваемой клеткой эритроидного ряда, образующейся из КОЕ-Э (предшественница эритроидного ряда), является проэритробласт, из которого в ходе 4-5 последующих удвоений и созревания образуется 16-32 зрелые эритроидные клетки.

1) 1 проэритробласт

2) 2 базофильных эритробласта I порядка

3) 4 базофильных эритробласта II порядка

4) 8 полихроматофильных эритробластов I порядка

5) 16 полихроматофильных эритробластов II порядка

6) 32 полихроматофильных нормобласта

7) 32 оксифильных нормобласта – денуклеация нормобластов

8) 32 ретикулоцита

9) 32 эритроцита.

Эритропоэз в костном мозге занимает 5 дней.

В костном мозге человека и животных эритропоэз (от проэритробласта до ретикулоцита) протекает в эритробластических островках костного мозга, которых в норме содержится до 137 на 1 мг ткани костного мозга. При угнетении эритропоэза их количество может уменьшаться в несколько раз, а при стимуляции – увеличиваться.

Из костного мозга в кровь поступают ретикулоциты, в течение суток созревающие в эритроциты. По количеству ретикулоцитов судят об эритроцитарной продукции костного мозга и интенсивности эритропоэза. У человека их количество составляет от 6 до 15 ретикулоцитов на 1000 эритроцитов.

За сутки в 1мкл крови поступает 60-80 тыс. эритроцитов. За 1 минуту образуется 160х106 эритроцитов.

Гуморальным регулятором эритропоэза является гомон эритропоэтин. Основным источником его у человека являются почки, их перитубулярные клетки. В них образуется до 85-90% гормона. Остальное количество вырабатывается в печени, подчелюстной слюнной железе.

Эритропоэтин усиливает пролиферацию всех способных к делению эритробластов и ускоряет синтез гемоглобина во всех эритроидных клетках, в ретикулоцитах, «запускает» в чувствительных к нему клетках синтез иРНК, необходимых для образования энзимов, участвующих в формировании гема и глобина. Гормон также увеличивает кровоток в сосудах, окружающих эритропоэтическую ткань в костном мозге и увеличивает выход в кровь ретикулоцитов из синусоидов красного костного мозга.

Физиология лейкоцитов.

Лейкоциты или белые кровяные тельца – это клетки крови, различной формы и величины, содержащие ядра.

В среднем у взрослого здорового человека в крови содержится 4 – 9х109/л лейкоцитов.

Увеличение их количества в крови получило название лейкоцитоз, уменьшение – лейкопения.

Лейкоциты, имеющие в цитоплазме зернистость, называются гранулоцитами,а не содержащие зернистость – агранулоцитами.

К гранулоцитам относят: нейтрофильные (палочкоядерные, сегментоядерные), базофильные и эозинофильные лейкоциты, а к агранулоцитам – лимфоциты и моноциты. Процентное соотношение между различными формами лейкоцитов называется лейкоцитарной формулой или лейкограммой (таб.1.).

Таблица 1.

Лейкоцитарная формула

гранулоциты агранулоциты
  базофилы   эозинофилы   Нейтрофилы (50-70%)   лимфоциты   моноциты
палочко ядерные сегменто ядерные
0-1% 1-4% (2-4%) 14% (2-5%) 50-65% (55-68%) 25-40% (23-35%) 2-8% (5-8%)

Все виды лейкоцитов способны к амебовидному движению, благодаря чему они могут выходить (мигрировать) через стенку кровеносных сосудов (этот процесс называется диапедезом).

Они обладают положительным хемотаксисом (направленным движением к объекту) по отношению к бактериальным токсинам, продуктам распада бактерий или клеток организма и комплексам антиген-антитело.

Лейкоциты способны окружать инородные тела и захватывать их в цитоплазму (фагоцитоз).

Большая часть (50%) лейкоцитов находится за пределами сосудистого русла в межклеточном пространстве, а также в костном мозге.

⇐ Предыдущая12345678910Следующая ⇒

Дата добавления: 2016-10-23; просмотров: 1605 | Нарушение авторских прав | Изречения для студентов

Источник: https://lektsii.org/7-93802.html

МедВопрос
Добавить комментарий